
N91-20652

An Architectural Approach to Create Self

Organizing Control Systems for Practical
Autonomous Robots

Helen Greiner

California Cybernetics Corporation

Introduction

For practical industrial applications, the

development of trainable robots is an

important and immediate objective.

Therefore, we emphasize developing the

type of flexible intelligence directly

applicable to training. It is generally

agreed upon by the AI community that

the fusion of expert systems, neural

networks, and conventionally pro-

grammed modules (e.g. a trajectory

generator) is promising in the quest for

autonomous robotic intelligence. In

spite of the recent advances in all of

these fields, autonomous robot

development is hindered by integration

and architectural problems. Some ob-

stacles towards the construction of more

general robot control systems are as
follows:

1.Growth Problem- In current

systems, substantial portions of the

existing control software must be

modified upon the addition of a new

subsystem.

2. Software Generation- Currently,

most software is written by people,

limiting the size of code that can be

created. Automatic software generation

methods are premature; program

writing programs are domain specific

and have severe limitations.

3. Interaction with Environment-

In order for the robot to properly

respond to the environment, it must

rely on a continuous influx of sensor

data as opposed to internally stored

representations. Conventional pro-

gramming methods do not easily lend to

massive, pipelined data processing.

4. Reliability- Most current systems

are built such that single point fail-

ures cause complete system failure.

5.Resource Limitation- Current

neural networks can learn most input to

output functions in terms of mapping,

but in case of practical problems they

often take an impossibly long time to

learn a function. The number of nodes

or connections needed may suffer from

combinatorial explosions rendering the

system impossible to build.

Neural networks can be successfully

applied to some of these problems.

However, current implementations of

neural networks are hampered by the

84



resourcelimitation problem and must
be trained extensively to produce
computationally accurate output.
Currently,there is no consensusas to
the structure of an intelligent robot
brain, functional break down, or
interfacedefinition. In this publication,
a generalizationof conventionalneural
nets is proposed,and an architectureis
offered in an attempt to addressthe
above problems.

Approach

The architecture that we propose

consists of three components: functional

groups, interfaces, and the graph

describing the information flow pattern

[1,2]. Each functional group performs a

specific operation, and the interfaces

between groups are vectors. The

interconnection graph will not strongly

depend on the kinematic structure of

the robot. However, if a robot lacks

certain sensory input, obviously the

corresponding functional groups will not

be present.

A functional group takes a vector as in-

put, performs its operation, and pro-

duces an output vector. The operation

of the functional group could be carried

out by conventional software, hardware,

or what we call a generalized network.

The term generalized network describes

one of the key elements in our work,

and deserves detailed explanation.

A generalized network consists of two

components, nodes and connections.

The nodes are simply memory elements

(2 byte numbers in our current imple-

mentation). The connections are able to

perform mathematical operations on the

node values. There is no theoretical

limitation on the kind of operation that

connections can perform or the number

of inputs and outputs that they have

(currently 16 bytes are being used). For

example, a PID control servo could be a

connection, where the inputs are the

position setpoint and gain and the out-

put is the commanded motor current.

This method developed from a practical

standpoint, to fuse advantageous

properties of neural nets and table

driven software. The programming is

simplified because the bulk of the

coding is done when the subroutine for

the connection is developed. During

training or operation the gains might

change or connections may be created

or destroyed, but this activity does not

carry the risk of catastrophic software

malfunction. If the task of a functional

group is recognition of a situation

present in sensory inputs, this group

will use connections designed to best

perform this task.

The architecture of the robot is defined

in a hierarchical, bottom up manner,

and training also occurs in this order.

Each functional group is independently

trained, and uses locally available

information (observation of input and

output vectors) to improve its behavior.

To illustrate how training occurs, we

will take the example of lowest level

motor control (see Figure 1). For this

purpose, the sensor inputs that are

directly related to motor action are

separated from the rest of the sensors,

and a new vector is created. A

functional group is defined whose

output directly drives the motors and

the inputs are as follows:

• sensor vector being controlled

• a vector marking which sensor

85



readingsshouldbe affected

• a vector of desired sensor

readings

This functional group could be realized

using conventional software, if the

effect of motor action is fully known to

the programmer. In this case, the

functional group would consist of a

number of PID servos that are

surrounded by conditional branches

such that the servo computation is

skipped if the particular sensor does

not need to be affected (the enable

vector). The gains in these PID servo

loops would be computed based on a

model of the system and modified

based on observed performance. An

alternative approach is to use a

generalized network to carry out this

control function. The tuning of the

gains is automatic based on the

connection's observation of the re-

sponse. Assuming that the generalized

network is simulated in software, the

difference between it and the original

software implementation is very subtle.

The generalized net looks like table

driven software. Later, when a custom

processor is built the connection oper-

ations will be processed in parallel,

making the difference more pro-

nounced.

SERVO ARRAY

FUNCTIONAL
GROUP

Figure 1 - Motor Servo

The advantage of using a generalized

network in this instance is the relative

ease of writing a list of connections. It

can be seen that even this simple

function of servoing low level sensor

readings can be improved by various

techniques that require progressively

more and more computational re-

sources. These functions can be added

by adding more connections to the ar-

ray.

The input to the motor servo array

consists of three vectors: the direct

sensor readings, the enable vector, and

the desired vector. The direct sensor

readings are inputs from the en-

vironment. The input nodes do not

have to be physical sensor readings,

nodes can be added purely to simplify

later calculations. For example, in order

to be able to move the tip of a robot leg

along a straight trajectory in cartesian

space, a new sensor node describing

the x coordinate of the tip is added to

the inputs. This node is calculated by

conventional forward kinematic soft-

ware. This is an excellent example of

integrating conventional software with

generalized networks. The enable vec-

tor turns individual servos on and off.

This prevents servoing motors when

they are not needed and can prevent

two competing servos from being simul-

taneously active. The desired vector is

a command to the motor servo group

from a higher level. The objective of

the motor servo group is to make the

direct sensor reading as close to the

desired sensor readings as possible.

The next higher level functional group is

the "activity group" (see Figure 2). This

group will be described in detail

because it contains many elements not

present in our previous example, and it

86



has features that reappear in the higher

levels. The interface between this

group and the motor servo group is the

desired and enable vectors which have

previously been described. The input to

this functional group is a vector of

activities (for example, the nodes of this

vector may include walking, standing, or

returning to the home position), and a

vector of sensory readings. The lines

into and out of the activity functional

group may be misleading, they in fact

represent a matrix of tunable con-

nections. The functional array contains

internal nodes which all have some

physical interpretation. The internal

vectors are also tied together by

matrices of connections. The three in-

ternal vectors used in this example are

the situation vector, the vector of

possible motions, and the robot motion

vector. The situation vector contains

nodes corresponding to certain com-

binations of environmental conditions.

It is connected to the sensor values. A

unique feature of this vector is that the

nodes are competitive [3]. Strong ac-

tivation of one node will inhibit

activation of the others. Thus, the robot

generalizes situations because a partial

match of environmental conditions can

cause the correct node to dominate. The

next vector, the possible motions vector,

contains nodes for each action such as

move leg 1 up or rotate body about yaw

axis. Each node is active only if the

motion is possible given the current

state of the robot. This prevents

situations such as driving a leg while it

is against a joint stop or picking up a leg

when the robot's weight is on it. The

last internal vector describes what

motion the robot should take. Examples

of nodes on this vector would be pick up

leg or rotate robot body. From this

vector the transformation to the desired

and enable vector is straightforward.

t.q
O

o_

.rn

O

I

I

I

I

I

I

I

I

0

u m

0

g.

9

Figure 2 - Activity

Functional Group

When the robot is first activated, all the

connections are present. Training is a

matter of the robot connections being

modified to produce the correct

response. Unnecessary connections are

eliminated to save resources. The robot

could be trained by producing random

motions and seeing if any produce the

correct result. However, since we know

what the output vectors should be for a

certain activity, another vector called a

hunch is introduced. Using the hunch

the robot's connections will be tuned.

For example, to train the robot to walk,

the node on the activity vector

corresponding to walking is activated.

The first hunch will activate the robot

motion vector such that one leg moves

forward (note: this simplified example

87



ignores other motions that might be
need to walk such as shifting body

weight). The sensors at this time have

caused a specific situation vector. Now

unless inhibited by the possible motion

vector, the connections between the

active nodes on the situation and the

robot motion vector will be strength-

ened. The next hunch may be to move

one of the other legs. Again, the con-

nections between the new situation and

the motion of this leg are strengthened.

This process is repeated for all the legs

until if the robot is in walking mode, it

has been trained what action to take

given the current state of the robot.

This is more valuable than simply pro-

gramming the robot to move the legs

sequentially because the robots actions

are a function of the situation it is most

nearly in.

Higher level functional groups can be

added to this architecture. For example,

the next level may be a "task group" in

which the objective is to retrieve an

object or follow a person. It is at this

level that the robots begin to be useful.

The bottom up approach to training of

each functional group allows the higher

levels to use the capabilities of the

lower levels. An important point is that

any improvement or additions to the

lower levels improve the performance

of the upper levels and don't necessitate

retraining each level.

What has been described so far is one

extreme of a wide spectrum of learning

methods. Namely, fully hunch based

learning. Learning in an intelligent

system could take place totally

autonomously, without the assistance of

hunches. In a real learning situation,

for a robot to be useful it has to

simultaneously use all possible sources

of information, and all beneficial

learning methods. The following ex-

ample will demonstrate non hunch

based learning and simultaneously it

will show one possible implementation

of an interface between layers that

facilitates smooth transition from

higher level control to low level auto-

matic execution of a task. In this

learning scheme instead of behaving

according to hunches the objective of

learning is to maximize a scalar function

called the objective function. It is

assumed that the computation of this

function is much simpler than carrying

out the actual task. This function is

either programmed into the robot by

hand or somehow communicated to it.

The robot control architecture generates

learning as described above. To learn

how to execute the task the control

system has to build a list of which is the

best action for every situation. The

difference from the earlier case is that

there is no hunch input which directly

facilitates the selection of the

appropriate action. The only clue as to

which action is best to take is the

change in the objective function. It is

clearly not adequate to locally maximize

the objective function with every action

since several neutral or slightly adverse

actions may have to be executed in a

sequence before progress is made. The

proposed scheme allows the robot to

develop a strategy for acheiving the

biggest increase in the objective

function in as short a time as possible.

To do this the robot builds a knowledge

base that describes the consequence of

its actions. This means that for every

situation and every action in that

situation, the robot has a prediction

about what situation it will get into.

Initially this data base is totally empty

88



and the robot builds it by registering
the actual sequencesof situationsthat
took place and the actions that cause
them. Two distinct types of behavior
are possible with this representation:
goal orientedbehaviorand exploratory
behavior. Whendisplayingexploratory
behavior the robot will try different
action in situationsthat it has already
encounteredjust to see the effect. On
the other hand, when displayinggoal
orientedbehavior,the robot will only
choseactionswhich have beentried to
maximize the object function as ef-
ficiently as possible. In the im-
plementationof sucha systemthereare
two layers, reflexive and strategic.
Initially, the reflexive layer is pro-
grammedwith individual actions that
are terminated by special situations
that make the action impossible. For
example, leg forward motion is ter-
minatedwhenthe leg hits its joint limit
or an obstacle. When the current
motion is terminated, the reflexive
layer goes idle. Detecting the idle
condition the strategic layer evaluates
the longterm consequenceof each
possible subsequentaction, and choses
the one deemedbest in terms of the
current behavior pattern (exploratory
or goal oriented). Learningtakesplace
simultaneouslyin both layers. The
reflexive layer tries to guess what
action the strategic layer will chose
next. A databasecontainsthe accuracy
of suchguessfor everysituation. If the
accuracyis high enoughthe reflexive
layer will take the next action
automatically(i.e. it never goes idle).
In sucha casethe strategiclayeris not
involved. Learning in the strategic
layer takes place by the continuous
improvement of the situation action
consequencedatabase.

Conclusion

There are many advantages to creating

a trainable architecture. In the in-

troduction, obstacles towards creating a

more general robot control system were

listed. Now, we briefly describe how

this architecture addresses these issues:

1. Growth Problem- Adding a new

subsystem only effects the immediate

functional group and expands it's

capabilities. Addition of new sensors

merely increases the number of con-

nections in the functional array.

2. Software Generation- Software is

not required to extend capabilities.

Capabilities grow through training.

3. Interaction with Environment-

Applicable sensory information is

available at all levels of the system and

the robot's action always depends on

the current situation.

4. Reliability- In case of e.g. sensor

failure, relevant situations are still

recognized based on other sensor

readings. If enhanced internal reliability

is desired, the number of nodes and

connections being used can be arbi-

trarily increased limited only by

resource availability.

5. Resource Limitation- After

training, the number of interconnections

is reduced from O(nXn) to O(n). The

connections so freed up can be reused to

support learning elsewhere in the

system.

We recognize that intelligent robots are

a long way from being fully developed.

However, practical autonomous robots

89



can be constructed with existing
technology.

References

[1] William P. Coleman et al. Modularity

of Neural Network Architecture. IJCNN-

90-Wash-DC, Lawrence Erlbaum

Associates, Inc., 365 Broadway, Hillsdale

NJ 07642, 1990.

[2] DARPA Neural Network Study.

AFCEA International Press, 4400 Fair

Lakes Court, Fairfax VA 22033 USA,

1990.

[3] Rumelhart, D., Hinton, G. and

Williams, R. (1986). Parallel Distributed

Processing, Vol I Cambridge, MA: MIT

Press.

90


